
Appendix JJ

The Band Gap

To find the form of the wave function and the energy near the zone boundary, we consider the Schrödinger equation for the
diffracted electron (
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∇2 + V(r)

)
ψk = ε(k)ψk. (JJ.1)

According to Eqs. (8.63) and (8.58), the wave function and the potential energy may be expressed in terms of plane waves
as follows:

ψk(r) =
∑
g′
αk−g′ei(k−g′) · r, (JJ.2)

and

V(r) =
∑
g′′

Vg′′eig
′′·r, (JJ.3)

where the summations over g′ and g′′ extend over the vectors of the reciprocal lattice. Substituting these equations into
Eq. (JJ.1) and using Eq. (8.63), we get∑

g′
ε0(k − g′)αk−g′ e

i(k−g′)·r +
∑
g′, g′′

Vg′′αk−g′e(k−g′+g′′)·r = ε(k)
∑
g′
αk−g′ei(k−g′)·r, (JJ.4)

where ε0(k − g′) is the kinetic energy of a free electron with wave vector k − g′. The term on the right-hand side of this
last equation may be grouped together with the first term on the left-hand side giving∑

g′

[
ε0(k − g′)− ε(k)

]
αk−g′ei(k−g′)·r +

∑
g′,g′′

Vg′′αk−g′ei(k−g′+g′′)·r = 0. (JJ.5)

Multiplying Eq. (JJ.5) through from the left by 1/V1/2 and by the function,

ψ∗
k (r) = 1

V1/2
e−ik·r, (JJ.6)

integrating over all space, and using Eq. (8.56), we obtain∑
g′

[ε0(k − g′)− ε(k)]αk−g′δk,k−g′ +
∑
g′,g′′

Vg′′αk−g′δk,k−g′+g′′ = 0. (JJ.7)

The Kronecker delta function δk,k−g′ occurring in the first term is equal to one if k = k − g′, and, otherwise, is equal to zero.
This Kronecker delta thus has the effect of reducing the first summation to a single term for which g′ = 0. Similarly, the
Kronecker delta in the second summation is one if g′ = g′′ being zero otherwise and reduces the double summation to a
single summation. We have

[ε0(k)− ε(k)]αk +
∑
g′
Vg′αk−g′ = 0. (JJ.8)
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As illustrated in Fig. 8.22, the crystal filed causes thewave functionwithwave vectork to interact with the state with wave
vector k − g. For a particular reciprocal lattice vector g, we thus ignore all coefficients except αk and αk−g. Equation (JJ.8)
then becomes

[ε0(k)− ε(k)]αk + V0αk + Vgαk−g = 0. (JJ.9)

We note that the Fourier coefficient V0 corresponds to a constant term in the potential energy V(r) and may thus be taken
to be zero. This eliminates the second term in the above equation, and we obtain

[ε0(k)− ε(k)]αk + Vgαk−g = 0. (JJ.10)

A second equation for the coefficients, αk and αk−g, can be obtained by multiplying Eq. (JJ.5) through from the left by
the function,

ψ∗
k−g(r) = 1

V1/2
e−i(k−g)·r, (JJ.11)

and integrating over all space as before. We get

[ε0(k − g)− ε(k)]αk−g +
∑
g′
Vg′−gαk−g′ = 0. (JJ.12)

Limiting ourselves again to the terms depending upon the coefficients, αk and αk−g, we note that the term in the sum for
which g′ = g vanishes since we have supposed that the Fourier coefficient V0 is equal to zero. Setting g′ = 0 in the above
summation leads to the equation

V−gαk + [ε0(k − g)− ε(k)]αk−g = 0. (JJ.13)

The Fourier coefficient V−g appearing in Eq. (JJ.13) is equal to the coefficient V∗
g which appears in the Fourier expansion

of V(r)∗.
A trivial solution of Eqs. (JJ.10) and (JJ.13) can be obtained by taking the coefficients, αk and αk−g, equal to zero. If

the determinant of Eqs. (JJ.10) and (JJ.13) is not equal to zero, this is the only solution of the equations. In order to find a
physically meaningful description of the diffracted electron, we thus set the determinant of the coefficients equal to zero.
We have [

[ε0(k)− ε(k)] Vg
V∗
g [ε0(k − g)− ε(k)]

]
= 0. (JJ.14)

The two free-electron states ek·r and e(k−g)·r have the same energy, ε0(k)− ε(k − g). If we denote this common value by
ε0, the quadratic equation resulting from Eq. (JJ.14) can be written

[ε(k)− ε0]2 − |Vg|2 = 0. (JJ.15)

Equation (JJ.15) has two solutions

ε(k)± = ε0 ± |Vg|. (JJ.16)

The interaction of the two free-electron states with wave vectors k and k − g thus cause a discontinuity in the energy at the
zone boundary. The magnitude of the discontinuity depends upon the Fourier coefficients, Vg, which occur in the expansion
of the potential energy.

An expression for the Fourier coefficients can be obtained by applying Eq. (8.26) to the periodic function V(r), which
gives

Vg = 1

vcell

∫
V(r)e−ig·r dV. (JJ.17)

We now divide Eq. (JJ.17) into real and imaginary parts by using Eurler’s equation

Vg = 1

vcell

∫
V(r) cos(g · r) dV − i

vcell

∫
V(r) sin(g · r) dV. (JJ.18)

Most of the common three-dimensional lattices are symmetric with respect to inversion r −→ −r. The body- and face-
centered cubic structures and the hexagonal close packed structures described in Chapter 8 are invariant with respect to
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inversions provided that a suitable choice is made of the origin. If the potential V(r) is symmetric with respect to inversion,
the second integral in Eq. (JJ.18) vanishes, and the equation for the Fourier coefficients becomes

Vg = 1

vcell

∫
V(r) cos(g · r) dVr. (JJ.19)

Since the electrons are attracted to the ion cores, the potential energy function V(r) is negative in the neighborhood of each
atom. It thus follows from Eq. (JJ.19) that the Fourier coefficient Vg are negative real numbers.

As discussed in Chapter 8, the crystal field mixes the two free-electron states ek·r and e(k−r)·r to produce states having
energies ε− and ε+. We can derive a condition for the coefficients of the lower state by substituting the value of ε− given
by Eq. (JJ.16) into Eq. (JJ.10) to obtain

|Vg|αk + Vgαk−g = 0. (JJ.20)

Since Vg is negative, |Vg| is equal to −Vg. Using this result together with Eq. (JJ.20), one may readily show that the
coefficients αk−g is equal to the coefficient αk. Similarly, we can derive a condition for the coefficients of the upper state
by substituting the value of ε+ given by Eq. (JJ.16) into Eq. (JJ.10) and using the relation |Vg| = −Vg to obtain

Vgαk + Vgαk−g = 0. (JJ.21)

This equation implies that for the upper state the mixing coefficient αk−g is equal to −αk. The spatial form of the wave
functions for the lower and upper states are discussed in the text.




