Appendix JJ

The Band Gap

To find the form of the wave function and the energy near the zone boundary, we consider the Schrödinger equation for the diffracted electron

$$
\begin{equation*}
\left(-\frac{\hbar^{2}}{2 m} \nabla^{2}+V(\mathbf{r})\right) \psi_{k}=\varepsilon(k) \psi_{k} \tag{JJ.1}
\end{equation*}
$$

According to Eqs. (8.63) and (8.58), the wave function and the potential energy may be expressed in terms of plane waves as follows:

$$
\begin{equation*}
\psi_{k}(\mathbf{r})=\sum_{g^{\prime}} \alpha_{k-g^{\prime}} \mathrm{e}^{\mathrm{i}\left(k-g^{\prime}\right)} \cdot \mathrm{r}, \tag{JJ.2}
\end{equation*}
$$

and

$$
\begin{equation*}
V(\mathbf{r})=\sum_{g^{\prime \prime}} V_{g^{\prime \prime}} \mathrm{e}^{\mathrm{i} g^{\prime \prime} \cdot \mathbf{r}} \tag{JJ.3}
\end{equation*}
$$

where the summations over g^{\prime} and $g^{\prime \prime}$ extend over the vectors of the reciprocal lattice. Substituting these equations into Eq. (JJ.1) and using Eq. (8.63), we get

$$
\begin{equation*}
\sum_{g^{\prime}} \varepsilon^{0}\left(k-g^{\prime}\right)_{\alpha_{k-g^{\prime}}} \mathrm{e}^{\mathrm{i}\left(k-g^{\prime}\right) \cdot \mathbf{r}}+\sum_{g^{\prime}, g^{\prime \prime}} V_{g^{\prime \prime}} \alpha_{k-g^{\prime}} \mathrm{e}^{\left(k-g^{\prime}+g^{\prime \prime}\right) \cdot \mathbf{r}}=\varepsilon(\mathbf{k}) \sum_{g^{\prime}} \alpha_{k-g^{\prime}} \mathrm{e}^{\mathrm{i}\left(k-g^{\prime}\right) \cdot \mathbf{r}} \tag{JJ.4}
\end{equation*}
$$

where $\varepsilon^{0}\left(\mathbf{k}-g^{\prime}\right)$ is the kinetic energy of a free electron with wave vector $\mathbf{k}-g^{\prime}$. The term on the right-hand side of this last equation may be grouped together with the first term on the left-hand side giving

$$
\begin{equation*}
\sum_{g^{\prime}}\left[\varepsilon^{0}\left(k-g^{\prime}\right)-\varepsilon(k)\right] \alpha_{k-g^{\prime}} \mathrm{e}^{\mathrm{i}\left(k-g^{\prime}\right) \cdot \mathbf{r}}+\sum_{g^{\prime}, g^{\prime \prime}} V_{\mathbf{g}^{\prime \prime}} \alpha_{k-g^{\prime}} \mathrm{e}^{\mathrm{i}\left(k-g^{\prime}+g^{\prime \prime}\right) \cdot \mathbf{r}}=0 \tag{JJ.5}
\end{equation*}
$$

Multiplying Eq. (JJ.5) through from the left by $1 / V^{1 / 2}$ and by the function,

$$
\begin{equation*}
\psi_{k}^{*}(\mathbf{r})=\frac{1}{V^{1 / 2}} \mathrm{e}^{-\mathrm{i} \mathbf{k} \cdot \mathbf{r}}, \tag{JJ.6}
\end{equation*}
$$

integrating over all space, and using Eq. (8.56), we obtain

$$
\begin{equation*}
\sum_{g^{\prime}}\left[\varepsilon^{0}\left(\mathbf{k}-\mathbf{g}^{\prime}\right)-\varepsilon(\mathbf{k})\right] \alpha_{\mathbf{k}-\mathbf{g}^{\prime}} \delta_{\mathbf{k}, \mathbf{k}-\mathbf{g}^{\prime}}+\sum_{g^{\prime}, g^{\prime \prime}} V_{g^{\prime \prime}} \alpha_{k-g^{\prime}} \delta_{\mathbf{k}, \mathbf{k}-\mathbf{g}^{\prime}+\mathbf{g}^{\prime \prime}}=0 \tag{JJ.7}
\end{equation*}
$$

The Kronecker delta function $\delta_{k, k-g^{\prime}}$ occurring in the first term is equal to one if $k=k-g^{\prime}$, and, otherwise, is equal to zero. This Kronecker delta thus has the effect of reducing the first summation to a single term for which $g^{\prime}=0$. Similarly, the Kronecker delta in the second summation is one if $g^{\prime}=g^{\prime \prime}$ being zero otherwise and reduces the double summation to a single summation. We have

$$
\begin{equation*}
\left[\varepsilon^{0}(\mathbf{k})-\varepsilon(\mathbf{k})\right] \alpha_{\mathbf{k}}+\sum_{g^{\prime}} V_{g^{\prime}} \alpha_{k-g^{\prime}}=0 \tag{JJ.8}
\end{equation*}
$$

As illustrated in Fig. 8.22, the crystal filed causes the wave function with wave vector \mathbf{k} to interact with the state with wave vector $\mathbf{k}-\mathbf{g}$. For a particular reciprocal lattice vector \mathbf{g}, we thus ignore all coefficients except α_{k} and α_{k-g}. Equation (JJ.8) then becomes

$$
\begin{equation*}
\left[\varepsilon^{0}(\mathbf{k})-\varepsilon(\mathbf{k})\right] \alpha_{k}+V_{0} \alpha_{k}+V_{g} \alpha_{k-g}=0 \tag{JJ.9}
\end{equation*}
$$

We note that the Fourier coefficient V_{0} corresponds to a constant term in the potential energy $V(r)$ and may thus be taken to be zero. This eliminates the second term in the above equation, and we obtain

$$
\begin{equation*}
\left[\varepsilon^{0}(\mathbf{k})-\varepsilon(\mathbf{k})\right] \alpha_{k}+V_{g} \alpha_{k-g}=0 \tag{JJ.10}
\end{equation*}
$$

A second equation for the coefficients, α_{k} and α_{k-g}, can be obtained by multiplying Eq. (JJ.5) through from the left by the function,

$$
\begin{equation*}
\psi_{k-g}^{*}(\mathbf{r})=\frac{1}{V^{1 / 2}} \mathrm{e}^{-\mathrm{i}(k-g) \cdot \mathrm{r}} \tag{JJ.11}
\end{equation*}
$$

and integrating over all space as before. We get

$$
\begin{equation*}
\left[\varepsilon^{0}(\mathbf{k}-\mathbf{g})-\varepsilon(\mathbf{k})\right] \alpha_{k-g}+\sum_{g^{\prime}} V_{g^{\prime}-g} \alpha_{k-g^{\prime}}=0 \tag{JJ.12}
\end{equation*}
$$

Limiting ourselves again to the terms depending upon the coefficients, α_{k} and α_{k-g}, we note that the term in the sum for which $g^{\prime}=g$ vanishes since we have supposed that the Fourier coefficient V_{0} is equal to zero. Setting $g^{\prime}=0$ in the above summation leads to the equation

$$
\begin{equation*}
V_{-g} \alpha_{k}+\left[\varepsilon^{0}(k-g)-\varepsilon(\mathbf{k})\right] \alpha_{\mathbf{k}-\mathbf{g}}=0 \tag{JJ.13}
\end{equation*}
$$

The Fourier coefficient V_{-g} appearing in Eq. (JJ.13) is equal to the coefficient V_{g}^{*} which appears in the Fourier expansion of $V(\mathbf{r})^{*}$.

A trivial solution of Eqs. (JJ.10) and (JJ.13) can be obtained by taking the coefficients, α_{k} and α_{k-g}, equal to zero. If the determinant of Eqs. (JJ.10) and (JJ.13) is not equal to zero, this is the only solution of the equations. In order to find a physically meaningful description of the diffracted electron, we thus set the determinant of the coefficients equal to zero. We have

$$
\left[\begin{array}{cc}
{\left[\varepsilon^{0}(\mathbf{k})-\varepsilon(\mathbf{k})\right]} & V_{g} \tag{JJ.14}\\
V_{g}^{*} & {\left[\varepsilon^{0}(\mathbf{k}-\mathbf{g})-\varepsilon(\mathbf{k})\right]}
\end{array}\right]=0
$$

The two free-electron states $\mathrm{e}^{k \cdot r}$ and $\mathrm{e}^{(k-g) \cdot r}$ have the same energy, $\varepsilon^{0}(\mathbf{k})-\varepsilon(\mathbf{k}-\mathbf{g})$. If we denote this common value by ε^{0}, the quadratic equation resulting from Eq. (JJ.14) can be written

$$
\begin{equation*}
\left[\varepsilon(\mathbf{k})-\varepsilon^{0}\right]^{2}-\left|V_{g}\right|^{2}=0 \tag{JJ.15}
\end{equation*}
$$

Equation (JJ.15) has two solutions

$$
\begin{equation*}
\varepsilon(\mathbf{k})^{ \pm}=\varepsilon^{0} \pm\left|V_{g}\right| \tag{JJ.16}
\end{equation*}
$$

The interaction of the two free-electron states with wave vectors \mathbf{k} and $\mathbf{k}-\mathbf{g}$ thus cause a discontinuity in the energy at the zone boundary. The magnitude of the discontinuity depends upon the Fourier coefficients, V_{g}, which occur in the expansion of the potential energy.

An expression for the Fourier coefficients can be obtained by applying Eq. (8.26) to the periodic function $V(\mathbf{r})$, which gives

$$
\begin{equation*}
V_{g}=\frac{1}{v_{\text {cell }}} \int V(\mathbf{r}) \mathrm{e}^{-\mathrm{i} g \cdot \mathbf{r}} \mathrm{~d} V \tag{JJ.17}
\end{equation*}
$$

We now divide Eq. (JJ.17) into real and imaginary parts by using Eurler's equation

$$
\begin{equation*}
V_{g}=\frac{1}{v_{\text {cell }}} \int V(\mathbf{r}) \cos (g \cdot r) \mathrm{d} V-\frac{i}{v_{\text {cell }}} \int V(\mathbf{r}) \sin (g \cdot r) \mathrm{d} V \tag{JJ.18}
\end{equation*}
$$

Most of the common three-dimensional lattices are symmetric with respect to inversion $\mathbf{r} \longrightarrow-\mathbf{r}$. The body- and facecentered cubic structures and the hexagonal close packed structures described in Chapter 8 are invariant with respect to
inversions provided that a suitable choice is made of the origin. If the potential $V(\mathbf{r})$ is symmetric with respect to inversion, the second integral in Eq. (JJ.18) vanishes, and the equation for the Fourier coefficients becomes

$$
\begin{equation*}
V_{g}=\frac{1}{v_{\text {cell }}} \int V(\mathbf{r}) \cos (g \cdot r) \mathrm{d} V_{r} \tag{JJ.19}
\end{equation*}
$$

Since the electrons are attracted to the ion cores, the potential energy function $V(\mathbf{r})$ is negative in the neighborhood of each atom. It thus follows from Eq. (JJ.19) that the Fourier coefficient $V_{\mathbf{g}}$ are negative real numbers.

As discussed in Chapter 8, the crystal field mixes the two free-electron states $\mathrm{e}^{k \cdot r}$ and $\mathrm{e}^{(k-r) \cdot r}$ to produce states having energies ε^{-}and ε^{+}. We can derive a condition for the coefficients of the lower state by substituting the value of ε^{-}given by Eq. (JJ.16) into Eq. (JJ.10) to obtain

$$
\begin{equation*}
\left|V_{g}\right| \alpha_{k}+V_{g} \alpha_{k-g}=0 \tag{JJ.20}
\end{equation*}
$$

Since V_{g} is negative, $\left|V_{g}\right|$ is equal to $-V_{g}$. Using this result together with Eq. (JJ.20), one may readily show that the coefficients α_{k-g} is equal to the coefficient $\alpha_{\mathbf{k}}$. Similarly, we can derive a condition for the coefficients of the upper state by substituting the value of ε^{+}given by Eq. (JJ.16) into Eq. (JJ.10) and using the relation $\left|V_{g}\right|=-V_{g}$ to obtain

$$
\begin{equation*}
V_{g} \alpha_{k}+V_{g} \alpha_{k-g}=0 \tag{JJ.21}
\end{equation*}
$$

This equation implies that for the upper state the mixing coefficient α_{k-g} is equal to $-\alpha_{k}$. The spatial form of the wave functions for the lower and upper states are discussed in the text.

